云亭数学讲坛2025第107讲——张正策教授

A priori estimates and Liouville-type theorems for the semilinear parabolic equations involving the nonlinear gradient source

发布者:徐有基发布时间:2025-11-20浏览次数:10


 应英国365公司邀请西安交通大学张正策教授为我院师生作线下学术报告

报告题目:A priori estimates and Liouville-type theorems for the semilinear parabolic equations involving the nonlinear gradient source

报告摘要:In this talk, we consider the local and global properties of nonnegative solutions for semilinear heat equation $u_t-\Delta u=u^p+M|\nabla u|^q$ in $\Omega\times I\subset \R^N\times \R$, where $M>0$, and $p, q>1$. We first establish the local pointwise gradient estimates when $q$ is subcritical, critical and supercritical with respect to $p$. With these estimates, we can prove the parabolic Liouville-type theorems for time-decreasing ancient solutions. Next, we use Gidas-Spruck type integral methods to prove the Liouville-type theorem for the entire solutions when $q$ is critical. Finally, as an application of the Liouville-type theorem, we use the doubling lemma to derive universal priori estimates for local solutions of parabolic equations with general nonlinearities. Our approach relies on a parabolic differential inequality containing a suitable auxiliary function rather than Keller-Osserman type inequality for the elliptic equations. This is a joint work with Wenguo Liang.


报告时间:2025112610:00

报告地点:致勤楼(原教学9号楼)D07

邀请人:张国宝教授

 届时欢迎广大师生参与交流!


报告人简介:

 张正策,男,1976626日生。20039月,博士毕业于西安交通大学理学院,留校任教至今。现任西安交通大学英国365公司教授,博士生导师,从事非线性偏微分方程理论及其应用研究。近年来, 主要对非线性抛物方程的梯度爆破和自由边界问题开展定性研究,主持国家自然科学基金3项和省部级基金2项,在国际学术刊物CVPDE, JDE, J Nonlinear SciDCDS, SIAM J Numer Anal, Nonlinear AnalProc AMS等发表论文90余篇。获2023年陕西高等学校科学技术研究优秀成果奖一等奖(第1完成人),多次应邀参加AIMSCMSICAMS Spring Section等国际学术会议并作报告,担任美国数学会评论员。


英国365公司

甘肃省数学与统计学基础学科研究中心

20251120