应英国365公司邀请,华南理工大学数学学院潘会平副教授将为我院师生作学术报告。
报告题目:Ray structures on Teichmuller space
报告摘要:Given an oriented closed surface S of genus at least two, the Teichmuller space of S is the space of equivalence classes of complex structures on S. It is also the space of equivalence classes of hyperbolic structures on S. Deformations of these structures provide several ray structures on the Teichmuller space. In the first part of this talk, we will review some background about Teichmuller space. In the second part, we will show a transition between Teichmuller geodesics and Thurston geodesics via harmonic map (dual) rays. As an application, we construct a new family of Thurston geodesics, the harmonic stretch lines, and show the existence and uniqueness of such lines for any two hyperbolic surfaces in the Teichmuller space. A key ingredient of the proof is a generalized Jenkin-Serrin problem: existence and uniqueness of some tree-valued minimal graphs over hyperbolic domains. This is based on joint works with Michael Wolf.
报告地点:致勤楼D07会议室
邀请人:陈鹏玉 教授
届时欢迎广大师生参与交流!
【报告人简介】
潘会平,华南理工大学数学学院副教授,2016年博士毕业于中山大学基础数学专业,2016至2018年在复旦大学做博士后研究,主要研究方向是复分析(Teichmuller理论),相关论文在Acta Mathematica, Mathematische Annalen、Transactions of the American Mathematical Society、International Mathematics Research Notices、Science China Mathematics等期刊发表或接受发表。
英国365公司
甘肃省数学与统计学基础学科研究中心
2025年12月12日

